12. December 2012   1:47 am
Mikki Larner

Mikki Larner
Belmont, CA

The last few months have been a whirlwind of conferences, speaking engagements, trade shows, customer visits, lots of meetings, a few visits to our North American headquarters (Chi town), Canadian offices, the mother ship (Germany), and a sprinkling of board meetings.

One of the highlights was attending the Biointerface 2012 meeting in Dublin. http://www.surfaces.org/

(Oh, when in Dublin, I highly recommend dining at the Winding Stair for delicious tastes of fresh unadulterated seafood  http://winding-stair.com/.  MAKE A RESERVATION or be prepared with a warm coat as you walk around waiting for your 10 pm table.)

The folks at UCD and Surfaces.org pulled together an excellent forum with a tremendous focus on use of plasma for “medicine” and let us in to the labs at UCD for a tour to include a demonstration of our Openair tool. http://www.ucd.ie/surfaces/facilities.htm

I have pages and pages of notes from the meetings and want to share a few stand out quotes and notes relevant to our technology:

“Interface influences failures”

Mr. Reto Luginbuehl (RMS Foundation, Switzerland)
The impacts on interface include: biology, modulus, surface chemistry, wear, morphology, infection, roughness to name just a few. It is so important to remember this when designing a program. Everything needs to be tested…not just surface energy with water. Need to understand all types of interactions with the surface for a successful product design.

Dr. Anna Belu, Medtronic, had an excellent case study about contamination which hit close to home as plasma is often used to remove UNEXPECTED contamination from various sources such as packaging or residue from gloves.

There were excellent poster presentations. One standout was from UCD. They report superphobic (150deg+) surfaces via atmospheric plasma using siloxane precursors. Sounds like there are some stability issues with the surface, but nonetheless, the advances in AP are promising.

Professor Buddy Ratner provided the keynote on “Emerging Biointerface Solutions – Translating in vitro results to the In Vivo Environment” and provided one of the best quotes of the conference (I don’t recall who originally make the statement, so Prof. Ratner can take the cred.):

“Engineering is the instrument of civilization”

His talks are always interesting and he is a dynamic speaker.

Prof. David Grainger followed with his very passionate presentation on correlating in vitro and in vivo as well – specifically for anti microbial. His point about understating patient genetic profiles/genetic dispositions as part of the solution in reducing infection is the future. Clinical testing / device testing (pre market) is limited to a specific population thus doesn’t capture the true effectiveness of the device. Unfortunately setting up an in vitro test protocol to screen our diverse population is not feasible due to $$$. So his point, well taken, is if the FDA will allow products that are proven SAFE on the market, the efficacy data will build as the product as used.

Mr. Bob Ward, ExThera (former PTG now DSM), presented on controlling surface chemistry for treating bacteremia and sepsis. Of interest to me were his comments about how surface density is greatly affected by structure. An import variable in plasma process development programs is appreciating the structure and surface area of a device and result on surface chemistry.

Dr. Marcela Bilek, University of Sydney, presented on “Bioactivation of surfaces using embedded radicals.” Great talk on use of plasma for infusion (my interpretation) of reactive species into bulk of polymers. She notes metals as well, but sounds like she is creating an interface on top of the metal. An important point of her talk and others is that wet chemistries can be timely, toxic, slow and expensive — reinforcing the benefit of plasma as an alternative. In some examples, wet chemistry processes take upwards of 60 hours. This can often be reduced or replaced in full by a plasma process at 5 to 10 or 20 minutes.

Overall it was a thought provoking conference and a great opportunity to network with the surfaces community. I look forward to next year!

This will probably be my last entry for the year….off to Germany for our annual sales meeting and back home for some R&D, OOPS, I mean R&R.
Happy new year!

Collegue Graham Porcas

Openair Plasma in Dublin, Colleague Graham Porcas demonstrating the equipment

5. December 2012   1:50 am
Khoren Sahagian

Khoren Sahagian

A proprietary PTS surface formulation is enabling SUPER omni-phobic surfaces on everything from machine tooling to porous media.  This novel surface chemistry maximizes water contact angles in a manner that appears to almost defy gravity (see photograph below).  The most impressive part of the process is that it is tunable to varying degrees of surface phobicity ranging from simple water, to oil, and finally even isopropyl alcohol!  Unlike dip coating methods that exhaust exotic monomers such as POSS (fluorodecyl polyhedral oligomeric silsesquioxane) the PTS vacuum plasma process uses almost no monomer and requires no thermal or UV curing steps.  This means true conformal coating of complex geometries with high yield and using a method that is superior in material and energy efficiency.

When deposited on machine molds and tooling the omni-phobic surface coating may act as a mold release, slip agent, & inhibit accumulation of debris.  Improved serviceability increases manufacturing efficiency by extending machine component lifetime and reducing the costs & frequency of scheduled maintenance programs.  Furthermore coating a thin film using plasma preserves micro-scale topography and ensures a permanent covalent bond with the substrate without the use of a primer or liquid etchant.  Because the omni-phobic film is derived from a plasma vapor phase it may even deposit into the tortuously small pore sizes of contemporary filtration media.  The coating is resistant to a wide range of temperature & chemistry.  Recent investigation of the surface treatment also demonstrates bacteriostatic characteristics which may possibly be exploited as an anti-microbial surface or to improve yield in cell transfer labware.